Are Restoration Goals and Timelines Consistent with Aquatic Invertebrate Life History Traits?

Jason Cruz, Philadelphia Water Department
Association of Mid-Atlantic Aquatic Biologists Annual Meeting
Cacapon State Park Berkeley Springs, WV 3/30-4/1 2010
Objectives

• Examine Restoration Goals and Timelines
• Discuss role of dispersal in stream restoration, possibility of using faunal reintroduction / *in-situ* bioassay
Restoration Project Goals - Problems

- Not defined *a priori* or tied directly to measurable monitoring goals
- Unrealistic or inappropriate scale of restoration
- Lack of or inadequate baseline data
Restoration Project Grant Timelines

- Short timelines, typically 2-3yrs, rarely 5yrs.
- May include one or more phases, e.g., concept design, final design, construction, or monitoring.
- Monitoring rarely falls within grant window.
Restoration Project Monitoring

- Monitoring effort inconsistent
- Projects included in NPDES permit have obligation to monitor
- Institutional “short term memory”
 - Partners cannot help past funding deadline
 - Push to implement new projects
Stream Restoration Project Goals

- Increase Habitat Heterogeneity
- Improve Biological Integrity
- Protect Sewer Infrastructure
- Urban BMP / Natural Stream Channel Design Demonstration Project
- Enhance Aesthetics of Park
Practical Goal – PA 303(d) list

• Urban Stream Restoration part of Watershed Management Plan

• Regulatory-based Goal

• 63% PADEP IBI for attaining aquatic life use

• Mechanism(s) for meeting goal not explicitly stated
“Field of Dreams” Hypothesis

- “If you build it, they will come.”
 - Some taxa already present at site (or nearby)
 - Some taxa locally extirpated and will need time to disperse to the site

1.) Palmer et al. 1997
Restoration Site Monitoring

- Macroinvertebrate, Habitat, Fish RBPs
- Cross-sectional and longitudinal profiles
- Bank pins, bar samples, sediment sampling
- 3D total station survey w/ velocity observations
Results to Date

- Construction disturbance impact
- Observed re-establishment of pre-existing macroinvertebrate community
 - Refugia within site
 - Drift from sites upstream
- Failure to achieve further improvement, likely due to additional abiotic stressors
 - Urban hydrology
 - Water quality impairment
Evaluate Ecological Success w/ Bioassessment

- Compare pre- and post- construction bioassessment results (metrics)
 - Only 2 samples: variability unaccounted for
 - Rapid protocols underestimate local species pool
- Monitoring timeframes
 - When (or how frequently) to monitor?
 - Rate of expected changes within community
- Biotic factors
Types of Dispersal²

- Passive dispersal
 - Phoresis – “Stowaways” Waterfowl, Anglers, Fish
 - Wind
- Active dispersal
 - Aerial dispersal by flying adults
- Dispersal through time
 - Diapause, resistant life stages

2.) Bilton, et al. 2001
Evidence for Dispersal of Stream Invertebrates

- Terrestrial collection of moving adults
 - Malaise3,4,5, light6,7, and sticky traps8
- Mark-recapture
 - Stable isotopes9,10,11
- Virgin, newly created habitats12
- Recovery from disturbance13
- Inferential evidence (i.e., gene flow) from molecular techniques14,15

Abiotic Factors Affecting Dispersal

- Regional species pool and population status
- Biogeography – location & distance of colonists
 - upstream, downstream, in-basin, out of basin
- Geology, climate, land use in intervening space between site and sources of colonists
Abiotic Factors Affecting Dispersal

- Conditions very unfavorable for colonization of restored habitats in Philadelphia area

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Any taxon</th>
<th>Taxa PTV<4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayflies</td>
<td>0.26</td>
<td>0.04</td>
</tr>
<tr>
<td>Stoneflies</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Caddisflies</td>
<td>0.91</td>
<td>0.09</td>
</tr>
</tbody>
</table>

PWD Macroinvertebrate sample results 2000-2010 $n=177$
Biotic Factors Affecting Dispersal

- Species-specific traits, some generalization is possible
- Flight ability and behavior
- Mating and oviposition behavior
 - Ovary development and length of pre-oviposition period
 - Feeding requirements
- Voltinism
- Some groups have traits unfavorable for dispersal and colonization
“Moving” Forward

- Based on present geographic distribution and poor dispersal ability factors, we should not assume that all taxa are prone to colonization of restored sites within 2-5yrs.

- Continue to implement stream restoration projects, collecting habitat and biological data

- Increase focus on headwaters (less susceptible to hydrology and water quality constraints)

- Consider faunal reintroduction and(or) in-situ bioassay at restoration sites
Faunal Reintroduction

- Release life stages of taxa not present at site, “wait and see” if they survive and reproduce
- No commercial sources
- If collected from wild
 - Risk of harm to natural populations
 - Undesired consequences, e.g., invasive species
- If data are collected to follow fate of released individuals, does not save much time relative to in-situ bioassay
In-situ bioassay

- Determine survivability under more controlled field conditions
- Collect accompanying water quality data
- May be useful in identification of other stressors
- One local example: Partnership for Delaware Estuary testing suitability of local streams (Brandywine R.) for reintroduction of freshwater mussels
Discussion

Any Questions?

jason.cruz@phila.gov
References